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Received 26 October 2006; accepted 31 October 2006
Available online 4 December 2006

Abstract

In [A.A. Stolin, On rational solutions of Yang–Baxter equation for sl(n), Math. Scand. 69 (1991) 57–80; A.A. Stolin, On
rational solutions of Yang–Baxter equation. Maximal orders in loop algebra, Comm. Math. Phys. 141 (1991) 533–548; A. Stolin,
A geometrical approach to rational solutions of the classical Yang–Baxter equation. Part I, in: Walter de Gruyter & Co. (Ed.),
Symposia Gaussiana, Conf. Alg., Berlin, New York, 1995, pp. 347–357] a theory of rational solutions of the classical Yang–Baxter
equation for a simple complex Lie algebra g was presented. We discuss this theory for simple compact real Lie algebras g. We
prove that up to gauge equivalence all rational solutions have the form X (u, v) =

Ω
u−v + t1 ∧ t2 + · · · + t2n−1 ∧ t2n , where Ω

denotes the quadratic Casimir element of g and {ti } are linearly independent elements in a maximal torus t of g. The quantization
of these solutions is also emphasized.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In their outstanding paper from 1982, A.A. Belavin and V.G. Drinfeld obtained an almost complete classification
of solutions of the classical Yang–Baxter equation with spectral parameter for a simple complex Lie algebra g. These
solutions are functions X (u, v) which depend only on the difference u − v and satisfy the CYBE and some additional
non-degeneracy condition. It was proved in [1] that non-degenerate solutions are of three types: rational, trigonometric
and elliptic. The last two kinds were fully classified in [1]. However, the similar question for rational solutions
remained open. This problem was solved in [8,9] by classifying instead solutions of the form

X (u, v) =
Ω

u − v
+ r(u, v), (1.1)

where r(u, v) is a polynomial with coefficients in g ⊗ g and Ω denotes the quadratic Casimir element of g. This
new type of solutions, which will also be called rational, look somewhat different from those in the Belavin–Drinfeld
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approach. However, as it turned out in [2], any solution of this type can be transformed into one which depends only
on u − v, by means of a holomorphic transformation.

In [8–10] a correspondence was established between rational solutions of the form (1.1) and so-called orders in
g((u−1)), i.e. subalgebras W of g((u−1)) which satisfy the condition

u−N1 g[[u−1
]] ⊆ W ⊆ uN2 g[[u−1

]] (1.2)

for some non-negative integers N1 and N2. The study of rational solutions is essentially based on this correspondence
and the description of the maximal orders.

In the present paper, we follow the method developed in [8–10] to study rational solutions of the CYBE for a
simple compact Lie algebra g over R. We establish a similar correspondence between solutions and orders and we are
interested in the description of the maximal orders. We obtain that there is only one maximal order, the trivial one.
Therefore all rational solutions will have the form

X (u, v) =
Ω

u − v
+ r, (1.3)

where r ∈ g ∧ g is a constant r -matrix. Here we would like to note that this theorem was communicated to the second
author by V. Drinfeld without proof.

On the other hand, there exists a 1–1 correspondence between skew-symmetric constant r -matrices and pairs
(L , B), where L is a subalgebra of g together with a non-degenerate 2-cocycle B ∈ Z2(L , R). A subalgebra L
for which there exists a non-degenerate B is called quasi-Frobenius. We prove that any quasi-Frobenius subalgebra
of a compact simple Lie algebra is commutative. Consequently, up to gauge equivalence, any rational solution has the
form

X (u, v) =
Ω

u − v
+ t1 ∧ t2 + · · · + t2n−1 ∧ t2n, (1.4)

where t1, . . . , t2n are linearly independent elements in a maximal torus t of g.
Finally we discuss the quantization of the Lie bialgebra structures corresponding to solutions of the form (1.4). The

quantization is obtained by twisting the real Yangian Yh̄(g).

2. Rational solutions and orders

Let g denote a simple compact Lie algebra over R and U (g) its universal enveloping algebra. Let [, ] be the usual
Lie bracket on the associative algebra U (g)⊗3.

We recall the following notation [1]: ϕ12, ϕ13, ϕ23, ϕ21: g ⊗ g → U (g)⊗3 are the linear maps respectively defined
by ϕ12(a ⊗ b) = a ⊗ b ⊗ 1, ϕ13(a ⊗ b) = a ⊗ 1 ⊗ b, ϕ23(a ⊗ b) = 1 ⊗ a ⊗ b and ϕ21(a ⊗ b) = b ⊗ a ⊗ 1, for any
a, b ∈ g.

For a function X : R2
→ g ⊗ g, we consider X ij: R2

→ U (g)⊗3 defined by X ij(ui , u j ) = ϕij(X (ui , u j )).

Definition 2.1 ([1]). A solution of the classical Yang–Baxter equation (CYBE) is a function X : R2
→ g ⊗ g such

that the following conditions are satisfied:

[X12(u1, u2), X13(u1, u3)] + [X12(u1, u2), X23(u2, u3)] + [X13(u1, u3), X23(u2, u3)] = 0 (2.1)

X12(u, v) = −X21(v, u). (2.2)

Let us consider the Killing form K on g. Then (−K ) is a positive definite invariant bilinear form on g. Let
{Iλ} be an orthonormal basis in g with respect to (−K ). We denote by Ω the quadratic Casimir element of g, i.e.
Ω = −

∑
Iλ ⊗ Iλ. Now we define rational solutions as in the complex case [8–10]:

Definition 2.2. A solution of the CYBE is called rational if it is of the form

X (u, v) =
Ω

u − v
+ r(u, v), (2.3)

where r(u, v) is a polynomial with coefficients in g ⊗ g.
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Remark 2.1. The simplest example of a rational solution is X0(u, v) =
Ω

u−v
. By adding to X0(u, v) any skew-

symmetric constant r -matrix, we also obtain a rational solution.

We will consider rational solutions up to a certain equivalence relation:

Definition 2.3. Two rational solutions X1 and X2 are said to be gauge equivalent if there exists σ(u) ∈ Aut(g[u])

such that

X1(u, v) = (σ (u) ⊗ σ(v))X2(u, v). (2.4)

Here Aut(g[u]) denotes the group of automorphisms of g[u] considered as an algebra over R[u].

Remark 2.2. One can check that gauge transformations applied to rational solutions also give rational solutions.

Let R[[u−1
]] be the ring of formal power series in u−1 and R((u−1)) its field of quotients. Set g[u] := g ⊗R R[u],

g[[u−1
]] := g ⊗R R[[u−1

]] and g((u−1)) := g ⊗R R((u−1)). There exists a non-degenerate ad -invariant bilinear form
on g((u−1)) given by

(x(u), y(u)) = Tr(ad x(u) · ad y(u))−1, (2.5)

meaning that we take the coefficient of u−1 in the series expansion of Tr(ad x(u) · ad y(u)).
In [8, Th. 1] a correspondence between rational solutions and a special class of subalgebras of g((u−1)) was

presented. The same result holds when g is real compact:

Theorem 2.1. Let g be a simple compact Lie algebra over R. There is a natural one-to-one correspondence between
rational solutions of the CYBE and subalgebras W ⊆ g((u−1)) such that

(1) W ⊇ u−N g[[u−1
]] for some N > 0;

(2) W ⊕ g[u] = g((u−1));
(3) W is a Lagrangian subspace with respect to the bilinear form on g((u−1)) given by (2.5), i.e. W = W ⊥.

Proof. We briefly sketch the proof which is similar to that in the complex case. Let V := g[u]. Then V ∗
=

u−1g[[u−1
]]. If f ∈ V ∗ and x ∈ V then f (x) := ( f, x), where (, ) is the bilinear form given by (2.5).

Denote by Homcont(V ∗, V ) the space of those linear maps F : V ∗
→ V such that Ker(F) ⊇ u−N V ∗ for some

N ≥ 0. To motivate the notation, we make the remark that this space consists of all linear maps F which are continuous
with respect to the “u−1-adic” topology. R[[u−1

]] is a topological valuation ring and V ∗ is a topological free R[[u−1
]]-

module. We also put the discrete topology on V .
There exists an isomorphism Φ : V ⊗ V → Homcont(V ∗, V ) defined by

Φ(x ⊗ y)( f ) = f (y)x, (2.6)

for any x , y ∈ V and f ∈ V ∗. The inverse map is given by

Φ−1(F) = −

n∑
i=1

∞∑
k=0

F(Ii u
−k−1) ⊗ Ii u

k, (2.7)

for any F ∈ Homcont(V ∗, V ). We make the remark that F(Ii u−k−1) = 0 for k ≥ N so that the sum which appears in
(2.7) is finite.

There is a natural bijection between Homcont(V ∗, V ) and the set of all subspaces W of g((u−1)) which are
complementary to V and such that W ⊇ u−N V ∗

= u−N−1g[[u−1
]] for some N ≥ 0. Indeed, for any F ∈

Homcont(V ∗, V ), we consider the following subspace of g((u−1)):

W (F) := { f + F( f ) : f ∈ V ∗
} (2.8)

which satisfies the required properties.
The inverse mapping associates with any W the linear function FW such that for any f ∈ V ∗, FW ( f ) = −x ,

uniquely defined by the decomposition f = w + x with w ∈ W and x ∈ V .
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One can easily see that W (Φ(r)) is Lagrangian with respect to the bilinear form (2.5) if and only if r12(u, v) =

−r21(v, u). Consequently, Ω/(u − v) + r(u, v) satisfies the unitarity condition (2.2) if and only if W (Φ(r)) is a
Lagrangian subspace.

Finally, if Ω/(u − v) + r(u, v) is a solution of (2.1) and (2.2), then

([ f + Φ(r)( f ), g + Φ(r)(g)], h + Φ(r)(h)) = 0 (2.9)

for any elements f , g, h in V ∗. Because W (Φ(r)) is Lagrangian, (2.9) implies that W (Φ(r)) is a subalgebra of
g((u−1)). �

Remark 2.3. One can easily see that if W is contained in g[[u−1
]] and satisfies the above properties, then the

corresponding rational solution has the form X (u, v) = Ω/(u − v) + r , where r is a constant polynomial.

Definition 2.4. An R-subalgebra W ⊆ g((u−1)) is called an order in g((u−1)) if there exist two non-negative integers
N1, N2 such that

u−N1 g[[u−1
]] ⊆ W ⊆ uN2 g[[u−1

]]. (2.10)

Obviously g[[u−1
]] is an order.

Remark 2.4. Let W satisfy conditions (1) and (3) of Theorem 2.1. Then W is an order.

As regards gauge equivalence, the result of Theorem 2 in [8] remains true:

Theorem 2.2. Let g be simple compact Lie algebra over R. Let X1 and X2 be rational solutions of the CYBE and
W1, W2 the corresponding orders in g((u−1)). Let σ(u) ∈ Aut(g[u]). Then the following conditions are equivalent:

(1) X1(u, v) = (σ (u) ⊗ σ(v))X2(u, v);
(2) W1 = σ(u)W2.

Definition 2.5. Let V1 and V2 be subalgebras of g((u−1)). We say that V1 and V2 are gauge equivalent if there exists
σ(u) ∈ Aut(g[u]) such that V1 = σ(u)V2.

3. Maximal orders for compact Lie algebras

We will prove the following result:

Theorem 3.1. Let g be a simple compact Lie algebra over R. Then any order W in g((u−1)) is gauge equivalent to
an order contained in g[[u−1

]].

Proof. Let G be a connected compact Lie group whose Lie algebra is g. Then G is embedded into SL(n, C) via any
irreducible complex representation. Without any loss of generality, we may suppose that the image of a maximal torus
T of G is included into the diagonal torus H of SL(n, C).

Let W denote an order of g((u−1)). Since we have the following sequence of embeddings:

W ↪→ W ⊗R C ↪→ (g ⊗R C) ⊗C C((u−1)) ↪→ sl(n, C((u−1))), (3.1)

we may view any w ∈ W as a matrix in sl(n, C((u−1))).
Let us prove that for each w ∈ W , the exponential exp(w) defined formally by

exp(w) :=

∑
k≥0

wk

k!
(3.2)

makes sense as an element of SL(n, C((u−1))).
Without any loss of generality, we may suppose that W is an R[[u−1

]]-module of finite rank. We set O := C[[u−1
]]

and consider the O-module

M := On
+ WOn

+ · · · + W W · · · WOn
+ · · · . (3.3)
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Let us show that there exists some integer l such that

M ⊆ ulOn . (3.4)

If x1, . . . , xr is a basis of the R[[u−1
]]-module W , then obviously

M ⊆

∑
ki ≥0

xk1
1 · · · xkr

r On . (3.5)

It is well known that the field K := C((u−1)) may be endowed with the discrete valuation v(
∑

k≥N aku−k) = N .
For any f ∈ K, we consider its norm:

| f | = 2−v( f ). (3.6)

Note that O is the set of all f such that | f | ≤ 1.
On the other hand, one can define a norm on gl(n, K) which is compatible with the norm of K. Given a matrix A

of gl(n, K), one sets

|A| = 2s, (3.7)

where s := inf k such that AOn
⊆ ukOn .

This norm satisfies the properties: |A1 A2| ≤ |A1||A2|, | f (u) · A| = | f (u)||A|, |A1 + A2| ≤ sup{|A1|, |A2|}.
We make the remark that, since W is an order, there exists N ≥ 0 such that |w| ≤ 2N for all w ∈ W .
In order to prove (3.4), it is enough to show that

sup
(k1,...,kr )

|xk1
1 · · · xkr

r | < ∞. (3.8)

This means that for each 1 ≤ i ≤ r there exists a positive integer Mi such that

sup
k

|xk
i | ≤ Mi . (3.9)

It suffices to prove that the norms of the eigenvalues of xi for the action of xi on Kn are less than or equal to 1.
Indeed, let us suppose that this requirement is fulfilled. Then the coefficients of the characteristic polynomial of xi
have norm less or equal to 1, so they belong to O. In follows that xi is integral over O, i.e. there exists aipi

, . . . , ai1 in
O such that x pi

i +aipi
x pi −1

+· · ·+ai1 = 0. One can check by induction that xk
i , for any k ≥ 0, is a linear combination

of 1, xi , . . . , x pi −1
i with coefficients in O. Since the elements of O have norm less or equal to 1, we get that

|xk
i | ≤ sup{1, |xi |, . . . , |x

pi −1
i |} (3.10)

for any k ≥ 0 and thus (3.9) will be fulfilled.
Let w be an arbitrary element of W . Let ε1(w), . . . , εn(w) be the eigenvalues of w for the action of w on Kn .

We will show that |εi (w)| ≤ 1 for all i . Without any loss of generality, we may suppose that w is a diagonalizable
element. Consider the eigenvalues α1(w), . . . , αm(w) for the action of w on (g ⊗R C) ⊗C C((u−1)). Some of them
are zero and some behave as roots. For any α j (w) there exists a corresponding eigenvector which belongs to W . Since
W ⊗R C is an O-module of finite type, it follows that |α j (w)| ≤ 1 for all j . On the other hand, because the weights
of a representation are linear combinations of simple roots, we have that ε1(w), . . . , εn(w) are linear combinations of
some α j (w) with rational coefficients. This implies that |εi (w)| ≤ 1 for all i .

Thus (3.9) holds and this implies (3.4). Since (3.4) holds for some integer l, exp(w) belongs to SL(n, C((u−1))),
for any w ∈ W . We denote by S the connected subgroup generated by exp(w) for all w ∈ W . Its Lie algebra is W .

Recall that G is embedded into SL(n, C) such that the image of a maximal torus T of G is contained in a maximal
torus H of SL(n, C). Let T be the affine Bruhat–Tits building associated with G(R((u−1))) and the valuation v. Let T ′

be the affine Bruhat–Tits building associated with SL(n, C((u−1))) and the valuation v. According to [4, p. 202–204]
there exists an embedding

T ↪→ T ′ (3.11)

which is compatible with the preceding embedding G ↪→ SL(n, C).
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Since W is contained in g((u−1)), one has that

S ⊆ G(R((u−1))) ↪→ SL(n, C((u−1))). (3.12)

The module M given by (3.3) satisfies the property SM ⊆ M . Since On
⊆ M ⊆ ulOn , it follows that SOn

⊆ ulOn .
Therefore S must be a bounded subgroup of SL(n, C((u−1))), i.e. there is an upper bound on the absolute values of
the matrix entries of the elements of S.

According to [3, p. 161], S is bounded in the sense of Bruhat–Tits bornology for the building T ′ (see [3, p. 160]).
Because the embedding T ↪→ T ′ is compatible with the building metric, it follows that S is a bounded subgroup of
G(R((u−1))), in the sense of Bruhat–Tits bornology corresponding to the building T .

Now the Bruhat–Tits fixed point theorem [3, p. 157, 161] implies that S fixes a point p of the building T .
It was proved in [7] that the action of G(R[u]) on the Bruhat–Tits building associated with G(R(u)) and the

valuation ω defined by ω( f/g) = deg(g) − deg( f ) admits as simplicial fundamental domain a so-called “sector”.
This result remains true when we pass to our building T since, on taking the completion R((u−1)), the building does
not change, only the apartment system gets completed. Moreover, the action of G(R[u]) is continuous. Let H denote
the Cartan subalgebra of sl(n, C) corresponding to H andHR its real part. The simplicial fundamental domain for the
action of G(R[u]) on T is contained in the standard apartment of the building T ′ which is identified with HR.

Let h be the point of HR which is equivalent to p via the action of G(R[u]). There exists X ∈ G(R[u]) such that
X p = h, which implies that X SX−1 is contained in the stabilizer Ph of h under the action of G(R((u−1))) on T .

On the other hand, Ph = P ′

h ∩ G(R((u−1))), where P ′

h is the stabilizer of h under the action of SL(n, C((u−1)))

on T ′. It follows that

Ad(X)W ⊆ g ⊗R R((u−1)) ∩ Lie(P ′

h). (3.13)

The stabilizer P ′

h was computed in [4, p. 238] and its Lie algebra is

Oh = {(gij) ∈ sl(n, C((u−1))) : v(gij) ≥ αij(h)}. (3.14)

Let us prove that

g ⊗R R((u−1)) ∩Oh ⊆ g ⊗R R[[u−1
]]. (3.15)

We know that

g ⊗R R((u−1)) ∩Oh ⊆ su(n) ⊗R R((u−1)) ∩Oh . (3.16)

It is enough to show the following:

su(n) ⊗R R((u−1)) ∩Oh ⊆ su(n) ⊗R R[[u−1
]]. (3.17)

If a matrix (gij) belongs to su(n) ⊗R R((u−1)) ∩ Oh , then v(gij) ≥ αij(h) for all i , j and gij + g j i = 0. We have
v(gij) = v(−gij) = v(g j i ). On the other hand, v(g j i ) ≥ −αij(h). We conclude that v(gij) ≥ 0 and therefore (gij)

belongs to su(n) ⊗R R[[u−1
]].

In conclusion, for some X ∈ G(R[u]), one has that

Ad(X)W ⊆ g ⊗R R[[u−1
]] (3.18)

which completes the proof. �

4. Description of rational solutions

Theorem 3.1 has an important consequence:

Corollary 4.1. Let g be a simple compact Lie algebra over R. Any rational solution of the CYBE for g is gauge
equivalent to a solution of the form

X (u, v) =
Ω

u − v
+ r, (4.1)

where r ∈ g ∧ g is a constant r-matrix.
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Proof. We know that any order W of g((u−1)) is gauge equivalent to an order contained in g[[u−1
]]. On the other hand,

if a rational solution X (u, v) corresponds to an order W ⊆ g[[u−1
]] then, by Remark 2.3, X (u, v) = Ω/(u − v) + r ,

where r is a constant polynomial. Because X (u, v) is a solution of the CYBE, it results that r itself is a solution of the
CYBE. �

Let us recall a result which describes constant solutions in a different way. This theorem was formulated for the
complex case in [1], but the proof obviously works for any simple compact Lie algebra g over R.

Theorem 4.1. Any rational solution of the CYBE of the form (4.1) induces a pair (L , B), where L is a subalgebra
of g and B is a non-degenerate 2-cocycle on L. The Lie subalgebra L is the smallest vector subspace in g such that
r ∈ L ∧ L and B is the bilinear form on L which is the inverse of r . Conversely, any pair (L , B) provides a rational
solution of the form (4.1), where r ∈ L ∧ L is the inverse of B.

Remark 4.1. In particular, if L is a commutative subalgebra of g and B is a non-degenerate skew-symmetric form on
L , then there exists the corresponding solution of the form (4.1).

Recall that a subalgebra L of g is called quasi-Frobenius if there exists a non-degenerate 2-cocycle B ∈ Z2(L , R).

Theorem 4.2. Let g be a simple compact Lie algebra over R. Any quasi-Frobenius Lie subalgebra L of g is
commutative.

Proof. Any subalgebra of a compact Lie algebra is compact. Therefore L must be compact as well. Moreover (see for
example [6, p. 97]), the derived algebra L ′ of L is semisimple and if ζ(L) denotes the center of L , then

L = L ′
⊕ ζ(L). (4.2)

Let us assume that L ′
6= 0 and there exists a non-degenerate 2-cocycle B on L . We have the following identity:

B([x, y], z) + B([y, z], x) + B([z, x], y) = 0 (4.3)

for any x , y ∈ L ′ and z ∈ ζ(L). This implies B([x, y], z) = 0 for arbitrary x , y ∈ L ′ and z ∈ ζ(L). Since L ′ is
semisimple, its derived algebra coincides with L ′. We obtain

B(w, z) = 0 (4.4)

for any w ∈ L ′ and z ∈ ζ(L).
On the other hand, since L ′ is semisimple, the restriction of B to L ′ is a coboundary, i.e. there exists a non-zero

functional f on L ′ such that B(w1, w2) = f ([w1, w2]), for all w1, w2 in L ′. Let a0 be the element of L ′ which
corresponds to f via the isomorphism L ′ ∼= (L ′)∗ defined by the Killing form. Then for all w ∈ L ′ one has

B(a0, w) = K (a0, [a0, w]) = K ([a0, a0], w) = 0. (4.5)

Together with (4.2) and (4.4) this implies that

B(a0, l) = 0 (4.6)

for all elements l of L . Thus B is degenerate on L , which is a contradiction. �

Corollary 4.2. Up to gauge equivalence, any rational solution of the CYBE for a simple compact Lie algebra g over
R has the form

X (u, v) =
Ω

u − v
+ t1 ∧ t2 + · · · + t2n−1 ∧ t2n, (4.7)

where t1, . . . , t2n are linearly independent elements in a maximal torus t of g.

Proof. We have seen that rational solutions are determined by pairs (L , B), where L is a quasi-Frobenius Lie
subalgebra and B a non-degenerate 2-cocycle on L . By the previous result, L is a commutative subalgebra and B
is a non-degenerate skew-symmetric form on L . Then L is contained in a maximal commutative subalgebra t of g and
the dimension of L is even, say 2n.

Moreover, it is well known that there exists a basis t1, . . . , t2n in L such that B(t2i−1, t2i ) = −B(t2i , t2i−1) = −1
for 1 ≤ i ≤ n and B(t j , tk) = 0 otherwise. The rational solution induced by the pair (L , B) is precisely (4.7). �
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5. Quantization

Let g be a simple compact Lie algebra over R. Let us recall that the rational solution X0(u, v) =
Ω

u−v
induces a

Lie bialgebra structure on g[u] via the 1-cocycle δ0 given by

δ0(a(u)) = [a(u) ⊗ 1 + 1 ⊗ a(v), X0(u, v)], (5.1)

for any a(u) ∈ g[u].
We have seen that, up to gauge equivalence, rational solutions have the form (4.7). With any such solution one can

associate a Lie bialgebra structure on g[u] by defining the 1-cocycle

δr (a(u)) = [a(u) ⊗ 1 + 1 ⊗ a(v), X (u, v)]. (5.2)

Here r = t1 ∧ t2 + · · · + t2n−1 ∧ t2n . In other words, the Lie bialgebra (g[u], δr ) is obtained from the Lie bialgebra
(g[u], δ0) by so-called twisting via r .

Remark 5.1. This notion was introduced by V.G. Drinfeld in a more general setting for Lie quasi-bialgebras.

The purpose of this section is to give a quantization of the Lie bialgebra (g[u], δr ).
Let us begin by pointing out that the Lie bialgebra (g[u], δ0) admits a unique quantization which we will denote by

Yh̄(g) (here h̄ is Planck’s constant). The construction is analogous to that of the Yangian introduced in [5]. We recall
that if K denotes the Killing form of a simple compact g, then (−K ) is a positive definite invariant bilinear form.
Let {Iλ} be an orthonormal basis in g with respect to (−K ). Then Yh̄(g) is the topological Hopf algebra over R[[h̄]]

generated by elements Iλ and Jλ with defining relations

[Iλ, Iµ] = cν
λµ Iν (5.3)

[Iλ, Jµ] = cν
λµ Jν (5.4)

[Jλ, [Jµ, Iν]] − [Iλ, [Jµ, Jν]] = h̄2 aαβγ
λµν {Iα, Iβ , Iγ } (5.5)

[[Jλ, Jµ], [Ir , Js]] + [[Jr , Js], [Iλ, Jµ]] = h̄2(aαβγ
λµν cν

rs + aαβγ
rsν cν

λµ){Iα, Iβ , Iγ }, (5.6)

where aαβγ
λµν :=

1
24 ci

λαc j
µβck

νγ ck
ij and {x1, x2, x3} := Σi 6= j 6=k xi x j xk . The comultiplication, the co-unit and the antipode

are given by the following:

∆(Iλ) = Iλ ⊗ 1 + 1 ⊗ Iλ (5.7)

∆(Jλ) = Jλ ⊗ 1 + 1 ⊗ Jλ −
h̄

2
cν
λµ Iν ⊗ Iµ (5.8)

ε(Iλ) = ε(Jλ) = 0, ε(1) = 1 (5.9)

S(Iλ) = −Iλ (5.10)

S(Jλ) = −Jλ +
h̄

4
Iλ. (5.11)

Clearly Yh̄(g) contains U (g)[[h̄]] as a Hopf subalgebra.
Since the generators of Yh̄(g) are simultaneously generators for the complex Yangian and all the structure constants

are real, it follows immediately from [5, Th. 3] that Yh̄(g) is a pseudotriangular Hopf algebra. More precisely, for any
real number a, define an automorphism Ta of Yh̄(g) by the formulae

Ta(Iλ) = Iλ (5.12)

Ta(Jλ) = Jλ + aIλ. (5.13)

Then there exists an element R(u) = 1 +
∑

∞

k=1 Rku−k , where R1 = Ω and Rk ∈ Yh̄(g)⊗2, such that the following
conditions are satisfied:

(Ta ⊗ Tb)R(u) = R(u + a − b) (5.14)

(Tu ⊗ 1)∆op(x) = R(u)((Tu ⊗ 1)∆(x))R(u)−1 (5.15)
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(∆ ⊗ 1)R(u) = R13(u)R23(u) (5.16)

R12(u)R21(−u) = 1 ⊗ 1 (5.17)

R12(u1 − u2)R13(u1 − u3)R23(u2 − u3) = R23(u2 − u3)R13(u1 − u3)R12(u1 − u2). (5.18)

Here ∆op denotes the opposite comultiplication.
In order to give a quantization of (g[u], δr ), we introduce a deformation of the Yangian Yh̄(g) by a so-called

quantum twist. The approach is based on [11, Th. 5] that we recall below:

Theorem 5.1. Let F ∈ (U (g)[[h̄]])⊗2 such that

F ≡ 1(mod h̄) (5.19)

(ε ⊗ 1)F = (1 ⊗ ε)F = 1 ⊗ 1 (5.20)

(∆ ⊗ 1)F · F12
= (1 ⊗ ∆)F · F23. (5.21)

Denote by Ỹh̄(g) the associative unital algebra which has the same multiplication m as Yh̄(g) but the comultiplication
is

∆̃ := F−1∆F. (5.22)

Then the following statements hold:
(1) Ỹh̄(g) is a Hopf algebra with antipode

S̃ := Q−1SQ, (5.23)

where Q = m((S ⊗ 1)(F)).
(2) Let R̃(u) := (F21)−1 R(u)F. Then Eqs. (5.14)–(5.18) hold for R̃(u) and ∆̃(u).

Remark 5.2. In the literature, an element F satisfying (5.19)–(5.21) is called a quantum twist of Yh̄(g). The Hopf
algebra Ỹh̄(g) is the twisted (or deformed) Yangian by the tensor F .

We can easily construct a quantum twist in the following way:

Proposition 5.1. Suppose that t1, . . . , t2n are linearly independent elements in a maximal torus t of g. Then the 2-
tensor

F = exp(h̄(t1 ⊗ t2 + · · · + t2n−1 ⊗ t2n)) (5.24)

is a quantum twist of Yh̄(g).

Proof. Conditions (5.19)–(5.21) can be checked by straightforward computations. �

Theorem 5.1 implies the following

Corollary 5.1. The deformed Hopf algebra Ỹh̄(g), obtained by applying the quantum twist F given by (5.24), is a
quantization of (g, δr ), where r = t1 ∧ t2 + · · · + t2n−1 ∧ t2n .

Proof. For any a ∈ Ỹh̄(g), we have to check the following:

h̄−1(∆̃(a) − ∆̃op(a))mod h̄ = δr (a mod h̄). (5.25)

Since ∆̃ = F−1∆F , we obtain

∆̃(a) − ∆̃op(a) = F−1∆(a)F − (F21)−1∆op(a)F21. (5.26)

On the other hand, since Yh̄(g) is a quantization of (g, δ0), we have that

∆(a) − ∆op(a) = h̄δ0(a mod h̄) + O(h̄2). (5.27)

Using (5.26) and (5.27) and (F21)−1 F = exp(h̄r), we obtain

∆̃(a) − ∆̃op(a) = h̄([∆(a), r ] + δ0(a mod h̄)) + O(h̄2) = h̄δr (a mod h̄) + O(h̄2). � (5.28)
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Finally, we give the explicit formulae for the comultiplication and antipode of the twisted Yangian Ỹh̄(g). Let us
recall the root system of g with respect to a torus, according to [6, p. 98–99]. We denote by h a Cartan subalgebra of
g ⊗R C and let Λ be the root system with respect to h, together with a lexicographic ordering of Λ. We choose the root
vectors eα , corresponding to each root α, such that K (eα, e−α) = −1. Let hR = {h ∈ h : α(h) ∈ R for all α}. We put

Cα :=
1

√
2
(eα + e−α) (5.29)

Sα :=
i

√
2
(eα − e−α). (5.30)

It is well known that

g = ihR ⊕

∑
α>0

(RCα ⊕ RSα). (5.31)

An orthonormal basis in g, with respect to the bilinear form (−K ), is formed by the elements Cα , Sα and p j := ik j ,
where {k j } is an orthonormal basis in hR. We choose this basis as our {Iλ}. The role of {Jλ} is played correspondingly
by some elements denoted by Uα , Vα and Pj . For any h ∈ hR we have the following:

[ih, Cα] = α(h)Sα (5.32)

[ih, Sα] = −α(h)Cα (5.33)

[ih, Uα] = α(h)Vα (5.34)

[ih, Vα] = −α(h)Uα. (5.35)

Let us consider now a quantum twist F as in (5.24). Since F is a product of exponents, it is enough to perform
computations for

F = exp(h̄(t1 ⊗ t2)), (5.36)

where t1 and t2 are two linearly independent elements in the torus t = ihR. Let t1 = ih1 and t2 = ih2, where h1 and
h2 are elements of hR.

Lemma 1. Let T1α := ih̄α(h1)h2 and T2α := ih̄α(h2)h1. The following identities hold:

F−1(Cα ⊗ 1)F = Cα ⊗ cos(T1α) − Sα ⊗ sin(T1α) (5.37)

F−1(1 ⊗ Cα)F = cos(T2α) ⊗ Cα − sin(T2α) ⊗ Sα (5.38)

F−1(Sα ⊗ 1)F = Sα ⊗ cos(T1α) + Cα ⊗ sin(T1α) (5.39)

F−1(1 ⊗ Sα)F = cos(T2α) ⊗ Sα + sin(T2α) ⊗ Cα. (5.40)

F−1(Uα ⊗ 1)F = Uα ⊗ cos(T1α) − Vα ⊗ sin(T1α) (5.41)

F−1(1 ⊗ Uα)F = cos(T2α) ⊗ Uα − sin(T2α) ⊗ Vα (5.42)

F−1(Vα ⊗ 1)F = Vα ⊗ cos(T1α) + Uα ⊗ sin(T1α) (5.43)

F−1(1 ⊗ Vα)F = cos(T2α) ⊗ Vα + sin(T2α) ⊗ Uα. (5.44)

Proof. To prove the first identity, we use relations (5.32), (5.33) and the formula

exp(λ)µ exp(−λ) = exp(ad (λ))µ = µ + [λ, µ] +
1
2!

[λ, [λ, µ]] + · · · (5.45)

for λ := −h̄(ih1 ⊗ ih2) and µ := Cα ⊗ 1.
Identities (5.38)–(5.44) can be proved in a similar way. �

Consequently we obtain the following result:
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Proposition 5.2. The comultiplication ∆̃ of the twisted Yangian Ỹh̄(g) is given on its generators by the following:

∆̃(Cα) = Cα ⊗ cos(T1α) − Sα ⊗ sin(T1α) + cos(T2α) ⊗ Cα − sin(T2α) ⊗ Sα

∆̃(Sα) = Sα ⊗ cos(T1α) + Cα ⊗ sin(T1α) + cos(T2α) ⊗ Sα + sin(T2α) ⊗ Cα

∆̃(Uα) = Uα ⊗ cos(T1α) − Vα ⊗ sin(T1α) + cos(T2α) ⊗ Uα − sin(T2α) ⊗ Vα

−
h̄

2
[Cα ⊗ cos(T1α) − Sα ⊗ sin(T1α), Ω̃ ]

∆̃(Vα) = Vα ⊗ cos(T1α) + Uα ⊗ sin(T1α) + cos(T2α) ⊗ Vα + sin(T2α) ⊗ Uα

−
h̄

2
[Sα ⊗ cos(T1α) + Cα ⊗ sin(T1α), Ω̃ ]

∆̃(p j ) = p j ⊗ 1 + 1 ⊗ p j

∆̃(Pj ) = Pj ⊗ 1 + 1 ⊗ Pj −
h̄

2
[p j ⊗ 1, Ω̃ ],

where

Ω̃ =

∑
α>0

(Cα cos(T2α) + Sα sin(T2α)) ⊗ (cos(T1α)Cα + sin(T1α)Sα)

+ (Cα sin(T2α) − Sα cos(T2α)) ⊗ (sin(T1α)Cα − cos(T1α)Sα) +

∑
j

p j ⊗ p j .

We conclude by making explicit the antipode S̃ of the twisted Yangian Ỹh̄(g). It is given by S̃ = Q−1SQ, where
Q = exp(h̄h1h2).

Like with Lemma 1, one can prove

Lemma 2. Let Tα := ih̄(α(h2)h1 + α(h1)h2). The following identities hold:

Q−1Cα Q = exp(h̄α(h1)α(h2))(cos(Tα)Cα + sin(Tα)Sα) (5.46)

Q−1Sα Q = exp(h̄α(h1)α(h2))(cos(Tα)Sα − sin(Tα)Cα) (5.47)

Q−1Uα Q = exp(h̄α(h1)α(h2))(cos(Tα)Uα + sin(Tα)Vα) (5.48)

Q−1Vα Q = exp(h̄α(h1)α(h2))(cos(Tα)Vα − sin(Tα)Uα). (5.49)

Proposition 5.3. The antipode S̃ of the deformed Yangian Ỹh̄(g) is given on its generators by

S̃(Cα) = − exp(h̄α(h1)α(h2))(cos(Tα)Cα + sin(Tα)Sα) (5.50)

S̃(Sα) = − exp(h̄α(h1)α(h2))(cos(Tα)Sα − sin(Tα)Cα) (5.51)

S̃(Uα) = exp(h̄α(h1)α(h2))

(
cos(Tα)

(
−Uα +

h̄

4
Cα

)
+ sin(Tα)

(
−Vα +

h̄

4
Sα

))
(5.52)

S̃(Vα) = exp(h̄α(h1)α(h2))

(
cos(Tα)

(
−Vα +

h̄

4
Sα

)
+ sin(Tα)

(
Uα −

h̄

4
Cα

))
. (5.53)

S̃(p j ) = −p j (5.54)

S̃(Pj ) = −Pj +
h̄

4
p j . (5.55)
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